Neuronal Ensemble Decoding Using a Dynamical Maximum Entropy Model
نویسندگان
چکیده
As advances in neurotechnology allow us to access the ensemble activity of multiple neurons simultaneously, many neurophysiologic studies have investigated how to decode neuronal ensemble activity. Neuronal ensemble activity from different brain regions exhibits a variety of characteristics, requiring substantially different decoding approaches. Among various models, a maximum entropy decoder is known to exploit not only individual firing activity but also interactions between neurons, extracting informationmore accurately for the caseswith persistent neuronal activity and/or low-frequency firing activity.However, it does not consider temporal changes in neuronal states and therefore would be susceptible to poor performance for nonstationary neuronal information processing. To address this issue, we develop a novel decoder that extends a maximum entropy decoder to take timevarying neural information into account. This decoder blends a dynamical system model of neural networks into the maximum entropy model to better suit for nonstationary circumstances. From two simulation studies, we demonstrate that the proposed dynamic maximum entropy decoder could cope well with time-varying information, which the conventional maximum entropy decoder could not achieve. The results suggest that the proposed decoder may be able to infer neural information more effectively as it exploits dynamical properties of underlying neural networks.
منابع مشابه
A Maximum Entropy Method for Particle Filtering
Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributi...
متن کاملPredicting distribution of Eurasian Lynx (Lynx lynx) using an ensemble modeling approach: A Case Study: Saveh Zarandieh Kharaghan Area, Markazi Province
Adequate knowledge about suitable habitats for wildlife is essential to prevent habitat destruction and extinction of species and for their conservation and management. The Eurasian lynx is one of the mostly distributed cats in Asia. In this study, we applied an ensemble habitat suitability modeling approach, using ten predictor variables to model Eurasian Lynx’s habitat suitability in Saveh Za...
متن کاملDecoding spikes in a spiking neuronal network
We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the ‘brute-force rate coding’ estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuro...
متن کاملPopulation Coding with Correlation and an Unfaithful Model
This study investigates a population decoding paradigm in which the maximum likelihood inference is based on an unfaithful decoding model (UMLI). This is usually the case for neural population decoding because the encoding process of the brain is not exactly known or because a simplified decoding model is preferred for saving computational cost. We consider an unfaithful decoding model that neg...
متن کاملMicrocanonical origin of the maximum entropy principle for open systems.
There are two distinct approaches for deriving the canonical ensemble. The canonical ensemble either follows as a special limit of the microcanonical ensemble or alternatively follows from the maximum entropy principle. We show the equivalence of these two approaches by applying the maximum entropy formulation to a closed universe consisting of an open system plus bath. We show that the target ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014